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A B S T R A C T   

Floating solar photovoltaic (FPV) deployments are increasing globally as the switch to renewable energy in-
tensifies, representing a considerable water surface transformation. FPV installations can potentially impact 
aquatic ecosystem function, either positively or negatively. However, these impacts are poorly resolved given the 
challenges of collecting empirical data for field or modelling experiments. In particular, there is limited evidence 
on the response of phytoplankton to changes in water body thermal dynamics and light climate with FPV. Given 
the importance of understanding phytoplankton biomass and species composition for managing ecosystem ser-
vices, we use an uncertainty estimation approach to simulate the effect of FPV coverage and array siting location 
on a UK reservoir. FPV coverage was modified in 10% increments from a baseline with 0% coverage to 100% 
coverage for three different FPV array siting locations based on reservoir circulation patterns. Results showed 
that FPV coverage significantly impacted thermal properties, resulting in highly variable impacts on phyto-
plankton biomass and species composition. The impacts on phytoplankton were often dependent on array siting 
location as well as surface coverage. Changes to phytoplankton species composition were offset by the decrease 
in phytoplankton biomass associated with increasing FPV coverage. We identified that similar phytoplankton 
biomass reductions could be achieved with less FPV coverage by deploying the FPV array on the water body’s 
faster-flowing area than the central or slower flowing areas. The difference in response dependent on siting 
location could be used to tailor phytoplankton management in water bodies. Simulation of water body-FPV 
interactions efficiently using an uncertainty approach is an essential tool to rapidly develop understanding 
and ultimately inform FPV developers and water body managers looking to minimise negative impacts and 
maximise co-benefits.   

1. Introduction 

Falling costs and the drive to decarbonise global energy supplies 
have led to widespread uptake of renewable energy sources, including 

solar photovoltaic (PV) technology. Solar PV has traditionally been 
dominated by ground- and rooftop-mounted installations. However, 
since 2007, water-deployed floating solar photovoltaics (FPV) have 
emerged as an alternative, especially in land-scarce areas (Cagle et al., 

Abbreviations: FPV, Floating solar photovoltaic; GLUE, General Likelihood Uncertainty Estimation; LoA, Limits of Acceptability; QEII, Queen Elizabeth II; MW, 
megawatt; BACI, Before After Control Impact. 

* Corresponding author. 
E-mail address: g.exley@lancaster.ac.uk (G. Exley).  

Contents lists available at ScienceDirect 

Journal of Environmental Management 

journal homepage: www.elsevier.com/locate/jenvman 

https://doi.org/10.1016/j.jenvman.2022.116410 
Received 6 April 2022; Received in revised form 19 September 2022; Accepted 27 September 2022   

mailto:g.exley@lancaster.ac.uk
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2022.116410
https://doi.org/10.1016/j.jenvman.2022.116410
https://doi.org/10.1016/j.jenvman.2022.116410
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2022.116410&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Environmental Management 324 (2022) 116410

2

2020). FPV deployment has been rapid, with over 2.6 GW of installed 
capacity globally (Haugwitz, 2020) and an anticipated annual growth 
rate of 28.9% between 2020 and 2027. Estimates show that there is 
technical potential for FPV to produce almost 10% of current national 
generation in the United States (Spencer et al., 2019), based on a water 
surface coverage of 27% on suitable water bodies. At a continental scale, 
FPV covering less than 1% of the surface of African hydropower dams 
could equal the generation from existing hydropower dams, the largest 
source of renewable energy across the continent (Sanchez et al., 2021). 

FPV is comprised of PV modules attached to a series of floats moored 
on the surface of a water body (Sahu et al., 2016). Host water bodies 
tend to be artificial (e.g. raw water reservoirs) and may be used for 
drinking water provision, irrigation or hydroelectric power generation 
(Momayez et al., 2009; Lee et al., 2020; Exley et al.,– 2021b). Deploying 
PV panels on water delivers enhanced performance and electricity 
generation over ground-based PV due to the cooling effect of the hosting 
water body (Choi et al., 2013; Sacramento et al., 2015; Yadav et al., 
2016; Oliveira-Pinto and Stokkermans, 2020) and reduces land use and 
land-cover change for renewable energy (Cagle et al., 2020). FPV is 
deployed at a range of coverages, that is, the percentage of the water 
surface transformed to host FPV relative to the water body area. 
Coverage depends on the size of the host water body, the FPV design and 
the rated capacity of the installation (Exley et al., 2021a). 

FPV represents an unprecedented change in the use of artificial water 
bodies. Understanding impacts is critical as water bodies provide 
numerous essential ecosystem goods and services, including water for 
consumption, water quality regulation, and supporting biodiversity 
(Maltby et al., 2011; Reynaud and Lanzanova, 2017; Grizzetti et al., 
2019). Impacts on the host water body could be significant, as light 
intensity and wind shear will be modified by the shading and sheltering 
effect of an FPV installation (Armstrong et al., 2020; Haas et al., 2020). 
Consequently, there is a pressing need to understand and predict the 
effects of FPV on water body processes and functions (Lee et al., 2020; 
Stiubiener et al., 2020; Zhang et al., 2020; Gorjian et al., 2021; Ziar 
et al., 2021). In particular, understanding changes to phytoplankton is 
critical, given their role as primary producers in aquatic ecosystems 
(Reynolds, 2006), the increased likelihood of harmful algal blooms 
under climate change (Ho et al., 2019), and the subsequent implications 
for recreation and potable water supply (Chapra et al., 2017). Moreover, 
surface cover proxies for FPV (e.g. ice) suggest that deployments could 
alter physicochemical habitat conditions in a way that would affect 
phytoplankton biomass and species composition (Wright, 1964; Danilov 
and Ekelund, 2001; Lenard and Wojciechowska, 2013; Yamamichi et al., 
2018; Exley et al., 2021b). 

Given the limited understanding of water body response to FPV 
deployment, investigations that rapidly develop knowledge should be 
prioritised. In-situ monitoring studies have quantified the impact of FPV 
installations on water temperatures (de Lima et al., 2021) and aquatic 
plants (Ziar et al., 2021). However, comprehensive empirical studies are 
resource-intensive and largely impractical when considering multiple 
deployment scenarios (Meyer et al., 2009; Janssen et al., 2015). Several 
studies have hypothesised potential effects of FPV, but these are often 
conflicting given the complexity of water body functioning. For 
example, it is claimed that water column shading beneath FPV in-
stallations will reduce phytoplankton growth (Armstrong et al., 2020; 
Lee et al., 2020). Yet, an evidence review of natural and human-made 
water surface covers found that surface cover may cause a shift to 
low-light adapted nuisance species, rather than a reduction in total 
biomass (Yamamichi et al., 2018; Exley et al., 2021b). Numerical 
modelling ‘experiments’ provide a less time- and resource-demanding 
alternative for rapidly testing multiple hypotheses on potential FPV in-
teractions without being limited to a single FPV design, sited on a spe-
cific part of a single water body for a limited time. However, given the 
limited empirical observations so far and limited data to parameterise 
models, conventional modelling approaches may be unsuitable (Page 
et al., 2018). Therefore, approaches that can account for the uncertainty 

associated with sparse input parameters or forcing data are necessary. 
Our overarching aim was to determine if FPV coverage and siting 

location, based on areas of differing circulation, influence phyto-
plankton biomass and species composition in a reservoir. We used an 
extended version of the MyLake model with enhanced phytoplankton 
representation to simulate FPV water quality impacts across discrete 
zones of a water body. Moreover, we employed an uncertainty estima-
tion approach, a practical solution to overcome the problems associated 
with limited input data, model parameterisation and validation of 
simulated output. We also discuss the implications of our findings for 
water body management and the application of the expanded model for 
future FPV deployments. 

2. Methodology 

2.1. MyLake FPV model 

To determine if FPV array siting location affects water body thermal 
properties, phytoplankton biomass and functional-type dynamics, we 
extended an existing open-source lake model, MyLake v2 (Markelov 
et al., 2019). Full details on the original MyLake can be found in Sal-
oranta and Andersen (2007) and the accompanying user manual (Sal-
oranta and Andersen, 2004). 

2.1.1. MyLake – existing model description 
MyLake v2 (Markelov et al., 2019) is a one-dimensional proc-

ess-based model capable of simulating the daily vertical distributions of 
water body temperature, phytoplankton, and dissolved and particulate 
substances, as well as interactions at the sediment-water interface 
(Saloranta and Andersen, 2007). MyLake has been successfully applied 
to various projects as a standalone simulation tool. For example, 
assessing ice regime (Livingstone and Adrian, 2009), lake thermody-
namics (Woolway et al., 2017), greenhouse gas emissions (Kiuru et al., 
2018), light dynamics (Pilla and Couture, 2021) and predicting cyano-
bacterial blooms (Moe et al., 2016). 

Like many one-dimensional lake models (e.g. General Lake Model; 
Hipsey et al. (2019), General Ocean Turbulence Model; Umlauf et al. 
(2005), PROTECH; Reynolds et al. (2001)), MyLake computes horizontal 
layer volumes from interpolated water body bathymetric data. In the 
original version of MyLake, the model could simulate a maximum of two 
species or functional groups of phytoplankton, with population dy-
namics controlled by phosphorus (P) limitation, light requirements, and 
loss processes (see Table 1 for a complete list of modifiable phyto-
plankton parameters). Nitrogen (N) and silica (Si) species, as state var-
iables, were added in v2 (Markelov et al., 2019). N-limited 
phytoplankton growth was incorporated in a recent application (Salk 
et al., 2022). The material cycle used by MyLake is presented in Ap-
pendix 1. 

2.1.2. MyLake – updated model description 
The assumption of lateral homogeneity in MyLake, inherent to most 

one-dimensional models, limits the model’s adaptability for simulating 
different water column ‘zones’. Consequently, in order to model the 
impacts of FPV we adapted and extended MyLake to enable simulation of 
the effects of varying FPV coverage on water bodies. Moreover, given 
the importance of phytoplankton on water supply reservoirs where FPV 
are often located, we enhanced the phytoplankton functionality. 

2.1.2.1. Multiple tanks and exchanges between tanks. To enable the 
explicit simulation of FPV installations on different types of water bodies 
and differently functioning ‘zones’ of water bodies, the MyLake model 
was extended to represent water bodies in a quasi-two-dimensional way, 
an approach successfully applied with other freshwater models (e.g. de 
la Fuente and Niño, 2008; Zhang and Rao, 2012; Dimitriou et al., 2017). 
Specifically, the original one-dimensional (one ‘tank’) model structure 
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was replicated into ‘n tanks’ (see supplementary information, Section 1). 
The quasi-two-dimensional functionality permits each tank to be 

independent, allowing for variation in water body characteristics, such 
as depth and flow, and spatial characteristics, such as littoral and pelagic 
zones. Alternatively, the functionality permits the simulation of covered 
and uncovered zones of a water body with FPV. Flows and exchanges are 
specified using an eddy diffusion matrix, which governs the amount of 
lateral mixing between contiguous tanks and an advection matrix that 
specifies flows between tanks (e.g. to represent internal water body 
circulation patterns). While the updated MyLake model can simulate an 
unrestricted number of tanks, the computational burden and availability 
of data for parameterising appropriate advection and diffusion matrices 
could be limiting. Consequently, the number of tanks should be as 
parsimonious as possible given the simulation requirements (see sup-
plementary information, Section 2). 

2.1.2.2. Phytoplankton growth module. To investigate phytoplankton 
species composition in response to FPV and the risk to water quality, we 
updated the MyLake phytoplankton growth module to simulate an un-
restricted number of phytoplankton species (or groups) with different 
functional behavioural traits. Here, we simulated phytoplankton in 
functional groups, as widely used in modelling applications, to over-
come the difficulty of specifying individual species parameters (Shimoda 
and Arhonditsis, 2016). Specifically, we modelled diatoms, cyanobac-
teria and green algae, enabled by generic representations of their 
non-taxonomical traits known to dictate behaviour (Salmaso et al., 
2015), such as growth, loss and nutrient uptake (Reynolds et al., 2002). 

As nutrient limitation is a primary determinant of the abundance and 
species composition of phytoplankton in water bodies (O’Neil et al., 
2012) we increased the model growth equations from two to three ()Eqn 
1, 2 and 3). Specifically, Si species were linked to the phytoplankton 
dynamics equations to allow the simulations of diatoms (Harrison et al., 
2012), in addition to the original phosphorus uptake module and the 
recently incorporated N-limited growth module (Salk et al., 2022) (see 
Table 1 for a complete list of phytoplankton parameters). Consequently, 
there are now three phytoplankton growth equations: 

P limited

μ = μmax .

(
S1

(S1 + KS1 )

)

.Tf .Lf

(1)  

P and N limited

μ = μmax .

(
S1

(S1 + KS1 )
.

S2

(S2 + KS2 )

)

.Tf .Lf

(2)  

P,N and Si limited

μ = μmax .

(
S1

(S1 + KS1 )
.

S2

(S2 + KS2 )
.

S3(
S3 + KS3

)

)

.Tf .Lf

(3)  

where μ = phytoplankton species growth rate on a given day (day− 1), 
μmax is the maximum phytoplankton growth rate at 20 ◦C; .Tf (− ) is a 
water temperature modifier; .Lf (− ) is a light modifier; S1 is phosphorus 
concentration (mg m− 3), S2 is nitrogen concentration (mg m− 3), S3 is 
silica concentration (mg m− 3), and KSx (mg m− 3) is the half molar 
saturation level for each nutrient (see Table 1 for full definitions). 

2.1.2.3. Initial model testing (functionality). Testing examined the 
functionality of multiple tank configurations and additional phyto-
plankton functional group representation using data from Lake 227 
(Ontario, Canada), Lake Vansjø (Norway) and subsequently Thames 
Water’s Queen Elizabeth II reservoir (outlined below; Section 2.2.1). We 
tested for internal consistencies (e.g. mass-balance conservation), 
appropriate phytoplankton functional group behaviour and dynamics 
(e.g. response to nutrient concentrations (Klausmeier and Litchman, 
2001) and functional group succession) and the sensitivity of model 
output to the number and configuration of tanks (see supplementary 
information, Section 2, for details). 

2.2. Modelling methodology 

We used the expanded model to simulate the effect of FPV on 
physical and biogeochemical indicators of water quality in the Queen 
Elizabeth II (QEII) reservoir. FPV are typically deployed on raw (un-
treated) water reservoirs, irrigation ponds and other artificial water 
bodies (Exley et al., 2021b), which typically have less extensive data 
than natural water bodies instrumented for research. Consequently, we 
took an uncertainty approach, specifically the Generalised Likelihood 
Uncertainty Estimation (GLUE) procedure (Beven and Binley, 1992) to 
account for the limited data. 

2.2.1. Study location 
The QEII reservoir is in south-west London (51◦ 23′ 27′′ N, 0◦ 23′ 32′′

W, surface area: 128 ha). The raw water reservoir has a maximum depth 
of 17.8 m and a maximum capacity of 19.6 million cubic meters. The 
reservoir is supplied with nutrient-rich water from the River Thames 
(Reynolds et al., 2005), pumped via three inlets on the reservoir bed, one 
to the west and one in each of the two southern corners. The reservoir 
outlet is situated in the north-eastern corner (Fig. 1). During the study 
year, 2018, the QEII reservoir had a mean hydraulic residence time of 44 
days (Ta, 2019). Reservoir volume ranged from >95% full between 
January to early May, before being drawn down over the summer and 
autumn to 73% volume in early November. Reservoir volume then 
returned to >95% at the end of 2018. In 2016, a 6.3 MW capacity FPV 
installation was deployed on the QEII reservoir, covering ~4.5% of the 
reservoir’s surface when full. 

2.2.2. Data inputs 

2.2.2.1. Forcing inputs. The QEII reservoir was modelled on a daily time 
step for one-year to demonstrate model application, using data from 
2018. As monitoring of the QEII reservoir is conducted at the reservoir 
outlet, inflow nutrient concentrations were obtained from two moni-
toring stations on the River Thames situated upstream (Wey tributary; 
~5.5 km) and downstream (Teddington Weir; ~11.5 km) of the QEII 
reservoir inlet (Environment Agency, 2018). Samples were taken 
approximately monthly and were linearly interpolated to obtain mean 

Table 1 
MyLake Parameters describing phytoplankton functional traits. PAR is photo-
synthetically active radiation.  

Parameter Description 

PAR saturation level for growth 
(mol-quanta m− 2 s− 1) 

Controls the light-limitation of growth 

Optical cross section of 
chlorophyll-a (m− 2 mg− 1) 

Specifies self-shading contribution 

Loss rate at 20 ◦C (day− 1) Overall loss rate (includes death, grazing etc. 
But not settling losses) 

Settling velocity (m day− 1) Phytoplankton-specific settling rates 
Specific growth rate at 20 ◦C 

(day− 1) 
Phytoplankton-specific maximum growth 
rates – modified by temperature, light and 
nutrient availability 

Half saturation growth P 
concentration (mg m− 3) 

Controls shape of growth curve based upon P 
concentration 

Half saturation growth N 
concentration (mg m− 3) 

Controls shape of growth curve based upon N 
concentration 

Half saturation growth Si 
concentration (mg m− 3) 

Controls shape of growth curve based upon Si 
concentration 

If phytoplankton are N-Limited Allows specification for N-fixing 
phytoplankton 

If phytoplankton are Si-Limited Allows specification of Si requirement (e.g. 
diatoms and chrysophytes) 

Scaling factor for inflow 
concentration of chlorophyll-a 
(− ) 

Distributes inflow chlorophyll-a across 
functional groups simulated  
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daily values throughout 2018. Inflow water temperatures were 
approximated from observed in-reservoir water temperatures. Daily 
outflow data provided by the reservoir operator were used as a proxy for 
inflow volume. In the absence of on-site meteorological measurements, 
global radiation, cloud cover, wind speed, air temperature, relative 
humidity, air pressure and rainfall observations from Heathrow Airport 
(10.5 km to the north) for 2018 were used (Met Office, 2019). Ba-
thymetry of the QEII reservoir was digitised to 1 m intervals from a 
survey provided by the reservoir operator. 

2.2.2.2. Data for evaluation of model performance. Observed water 
temperature and total chlorophyll-a data provided by the reservoir 
operator was used for model calibration and uncertainty estimation. 
Typically, these samples were collected weekly at the reservoir outlet at 
depths of 1, 3, 5, 7, 9, 11, 13 and 15 m. Weekly phytoplankton specia-
tion, analysed by the reservoir operator, was derived from an integrated 
sample of the upper 1 m of the reservoir and recorded based on the cell 
count by ascribing a rating on an ACFOR (Abundant, Common, 
Frequent, Occasional, Rare) scale (see supplementary information, 
Section 3, for further details). Six functional groups were simulated to 
broadly reflect the phytoplankton species composition observed in the 
QEII reservoir during 2018, separated by grazed and ungrazed 

groupings. The groups represent the broad functional trait differences, 
including grazing pressures (represented by loss rate), size, growth rate, 
their light requirement for growth and settling velocity. The six func-
tional groups were reported only as diatoms, cyanobacteria and green 
algae in the following analyses (Table 2), as the grazed and ungrazed 
groupings were combined for each group. 

2.2.3. Model geometry and simulations 

2.2.3.1. Tank configuration. In this study, the new multi-tank func-
tionality of the model was used to represent discrete zones of internal 
circulation. Tank configuration was based on a detailed study of internal 
circulation in the QEII reservoir for 2018 (Ta, 2019) and testing of tank 
configurations (see supplementary information, Section 2). The baseline 
model was assigned two tanks, one relatively short residence time, fas-
ter-flowing tank (70% of QEII volume) and one comparatively longer 
residence time, slower-flowing tank (30% of QEII volume). The tanks 
mimic the hydrologic behaviour of the QEII reservoir, namely the 
short-circuiting of flow between the reservoir inlets and outlet. The 
existing FPV array is positioned on the slower-flowing tank (Section 
2.2.1; Fig. 1). The inflow and outflow of the reservoir were located in the 
faster-flowing tank. The distribution matrices described exchanges be-
tween the faster-flowing tank and the slower-flowing tank; lateral eddy 
diffusion (set at 2.5% of tank volume) and advection (set at 2.5% of tank 
volume) (see supplementary information, Section 2, for further details). 

2.2.3.2. Identification of baseline model simulations. Acceptable baseline 
simulation results and parameter sets were identified by comparing 
model output from multiple model runs with observed data (total 
chlorophyll-a, surface temperature, stratification pattern and phyto-
plankton functional group proportions). Parameter ranges, comprised of 
all physically reasonable values for each parameter (see supplementary 
information, Section 3), were sampled 8000 times using a Monte Carlo 
strategy to limit bias within the parameter sets. Each Monte Carlo 
sample provided a unique set of parameters to run 8000 simulations. 
Each of the simulations underwent the GLUE procedure (Beven and 
Binley, 1992), where formalised Limits of Acceptability (LoA) were 
developed and used as acceptance criteria to account for the significant 
uncertainties associated with modelling environmental systems (see 
supplementary information, Section 4, for further details). 

LoA were applied in the strictest sense for chlorophyll-a and mixed 
depth: any simulations that fell outside the specified limits were rejected 
and not used in the analyses. The remaining variables were used solely 
to provide additional confidence weightings. Confidence weightings (L) 
for accepted simulations were calculated using fuzzy weighting func-
tions and were combined to give an overall weighting for each simula-
tion. Chlorophyll-a (LChl), mixed depth (Lmxd) and water temperature 
(Lwt) were equally weighted in the combined overall goodness of fit 
weighting (Wt). Phytoplankton functional groups, where LD, LG and LC 
are the weighting for diatoms, cyanobacteria and green algae, respec-
tively, had a weighting of one-third to prevent over-constraint on 

Fig. 1. Conceptual Baseline ‘tank’ structure for QEII during 2018. Satellite 
image from Google Earth. 

Table 2 
Nominal phytoplankton functional groups used and descriptive functional traits. See supplementary information, Section 3, for the ranges of each sampled parameter.  

Phytoplankton functional group Nutrient limited Size Growth Rate Light requirement for growth Settling velocity Loss rate 

P N Si 

Diatoms – ungrazed ✓ ✓ ✓ Large Slow Low High – 
Diatoms – grazed ✓ ✓ ✓ Large Slow Low High +

Cyanobacteria – ungrazed ✓   Small/medium Medium Medium Very low – 
Cyanobacteria – grazed ✓   Small/medium Medium Medium Very low +

Green/other algae – ungrazed ✓ ✓  Small Fast Medium Low – 
Green/other algae – grazed ✓ ✓  Small Fast Medium Low +

+: Increased to reflect grazing losses; − : Reduced to reflect no grazing losses. 
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functional groups (Eqn 4). 

Wt = [(LChl + Lmxd +Lwt +(LD.0.33)+ (LC.0.33)+ (LG.0.33) )] (4) 

As all acceptable simulations are deemed to represent the system 
behaviour (given the available data), they are all used to represent the 
baseline. However, as each acceptable simulation is associated with a 
goodness of fit weighting, which is propagated to the final results, each 
acceptable simulation contributes differently. Using all the acceptable 
simulations in this way explicitly propagates all known modelling un-
certainties to final modelling results. The implementation of FPV 
deployment in the model took the form of a modification to each of the 
acceptable parameter sets to represent the solar array associated with 
the scenario of interest. 

2.2.3.3. FPV deployment scenarios. Three ‘deployment scenarios’ were 
run to investigate the impact of array siting location on water body 
response (Table 3). Each scenario was run multiple times to simulate 
varying degrees of FPV coverage – the ‘coverage increments’. The 
coverage increment represents the percentage of the reservoir’s total 
surface area covered by FPV, accounting for the existing 4.5% coverage 
of the presently deployed array (see Section 2.2.1). In the following 
scenarios, we use coverage increments of 10% from a baseline of 0% 
coverage to complete reservoir coverage (100%). 

- Each deployment scenario was simulated with a range of FPV 
‘coverage increments’ from 0% coverage (baseline) to 100% in 10% 
increments. 

2.3. Modelling assumptions and sources of uncertainty 

Each model run, in terms of the deployment scenario and coverage 
increment, was based on a set of assumptions to represent the water 
body and approximate the effects of FPV coverage. At present, there are 
no published values for the effect of FPV on air temperature, wind speed 
and incoming solar radiation at the air-water interface. The effect on 
each driver is likely modified depending on system design, such as 
transparency of the PV module, airflow beneath the floating array and 
orientation of the array (Armstrong et al., 2020; Exley et al., 2021a; Ziar 
et al., 2021). For this study, the effects of an array were estimated from 
unpublished observations made at an FPV installation (see supplemen-
tary information, Section 5, for methods) and published observations 
made at a ground-based installation (Armstrong et al., 2016). Based on 
the results of these preliminary observations, we assumed that between 
the water’s surface and the underside of the PV module; air temperature 
is warmed by 8%, incoming solar radiation is reduced by 94%, and wind 
speed is reduced by 95%. All scenarios are also based on the likely as-
sumptions that the functional phytoplankton groups adequately 

represent the phytoplankton community observed in the QEII reservoir 
and that the initial phytoplankton community composition (i.e., relative 
proportions of taxa) were set to be equal on the first day of each simu-
lation to permit an equal chance of proliferation. 

2.4. Model output analysis 

To summarise the impact of varying FPV coverage and siting location 
on phytoplankton biomass and species composition, we compared 
model outputs from each scenario against the baseline (Table 3). We 
analysed the output from the faster-flowing tank, as this is the tank that 
feeds the water treatment works. Given the plethora of data outputted, 
we focussed on variables influencing phytoplankton biomass and species 
composition, including surface water temperature at 1 m and stratifi-
cation metrics. To represent phytoplankton biomass and species 
composition, we used total chlorophyll-a concentration and the pro-
portions of each phytoplankton functional group as a proportion of total 
chlorophyll-a, both at 1 m depth. The proportions of phytoplankton 
functional groups are presented as relative, not absolute values for visual 
clarity. 

Given the use of the GLUE methodology, each scenario has the out-
puts from several model simulations. To capture the variability in out-
comes, thus representing the uncertainty, we use the median, 2.5th and 
97.5th percentiles, thus providing the average outcome and the 95% 
confidence interval. To explore the impacts on the annual minimum 
(Tmin) and maximum (Tmax) water temperature and maximum total 
chlorophyll-a concentration, we use the mean of each based on a ten-day 
window defined by the baseline model runs. Stratification was deter-
mined using a threshold density gradient of 0.1 kg m− 3 m− 1 between 
adjacent layers (Gray et al., 2020). Two metrics were used to summarise 
stratification duration. These were continuous stratification, the longest 
period of stratification in each simulation, and cumulative stratification 
duration, the total number of stratified days during the one-year simu-
lation period. Stratification onset and overturn were defined as the first 
and last day of the longest period of continuous stratification, 
respectively. 

3. Results 

3.1. Simulations within the limits of acceptability 

Seventy-five parameter sets were within the LoA for all simulations; 
the remaining 7925 parameter sets were rejected and not used in the 
subsequent analyses. Given the limited input data and strict inclusion 
criteria applied, most excluded parameter sets were rejected based on 
their representation of total chlorophyll-a (Fig. 2), functional groups and 
mixed depth. The model simulated water temperature within the LoA for 
most parameter sets (<95%). The goodness of fit weighting for the 
accepted parameter sets ranged from 80.62 to 84.01, of a maximum 
possible weighting of 204 (determined by the number of observations 
available for the QEII reservoir). 

3.2. Response of thermal properties 

FPV coverage cooled median surface water temperatures throughout 
the year (Figures S 6–1, 6–2, 6–3). However, on a small number of days 
between mid-spring and early summer, the 10% coverage increment 
resulted in slightly warmer (<0.6 ◦C) surface water temperatures than 
the baseline (i.e. no additional FPV coverage) in Scenario-Fast and 
Scenario-Central for nine days. Similarly, at 10–30% coverage in 
Scenario-Slow, there were ten days when FPV coverage warmed median 
surface water temperatures (<0.5 ◦C) compared to the baseline. 

For all scenarios, median Tmax and Tmin were reduced with increasing 
FPV coverage, based on the mean of a window (± five days), defined by 
the baseline model runs. FPV deployment on the fast-flowing tank 
(Scenario-Fast) saw a comparatively quick decline in Tmax and Tmin with 

Table 3 
Scenarios and a summary of the deployment configuration.  

Scenario Description 

Baseline The reservoir simulated with no additional FPV coverage (includes the 
existing 4.5% coverage of the presently deployed array) – shown as 0% 
coverage.   

Scenario-Fast FPV installation initially deployed on the faster-flowing tank, an 
area of the reservoir with a shorter-residence time. Once the FPV 
installation exceeds the area of the faster-flowing tank the FPV 
array is deployed upon the slower-flowing tank (Fig. 1). 

Scenario-Slow FPV installation initially deployed on the slower-flowing tank, an 
area of the reservoir with a longer-residence time. Once the FPV 
installation exceeds the area of the slower-flowing tank the FPV 
array is deployed upon the faster-flowing tank (Fig. 1). 

Scenario- 
Central 

Central siting of FPV installation. Initially the array is deployed on 
the faster-flowing tank, as the larger of the two tanks (Fig. 1). Once 
the remaining uncovered area of the faster-flowing tank is equal in 
area to the slower-flowing tank, the deployment of the array is split 
equally between each tank.  
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increasing FPV coverage. Median Tmax decreased on average 0.55 ±
0.09 ◦C (mean difference ± SD; hereafter unless stated) per 10% 
coverage increment for FPV coverages up to 70% (i.e. when the FPV 
encroached on the slower flowing tank). Median Tmin decreased by 0.20 
± 0.11 ◦C per 10% coverage increment up to 70% coverage. The rate 
was reduced once the array encroached on the slower-flowing tank (FPV 
coverages greater than 70%). Tmax decreased by 0.16 ± 0.03 ◦C per 10% 
coverage increment and Tmin decreased by 0.02 ± 0.004 ◦C per 10% 
coverage increment (Fig. 3a and b). 

Deployment on the slower-flowing tank (Scenario-Slow) initially 
caused a slower decline in median Tmax and Tmin, 0.15 ± 0.04 ◦C and 
0.02 ± 0.01 ◦C, respectively, per 10% coverage increment up to 30%, 
than in Scenario-Fast. After the FPV encroached on the faster-flowing 
area (above 30% coverage), Tmax decreased by 0.56 ± 0.15 ◦C, and 
Tmin decreased by 0.20 ± 0.11 ◦C, per 10% coverage increment. In 
contrast, median Tmax declined linearly by 0.44 ± 0.08 ◦C for each 10% 
coverage increment when the array was located centrally on the reser-
voir (Scenario-Central; Fig. 3a). Tmin for Scenario-Central reduced by 
0.14 ± 0.06 ◦C for each 10% increase in FPV coverage. There was 
increasing divergence between the lower (2.5th) and upper (97.5th) 
percentile at higher FPV coverages (Fig. 3b). For example, at 10% 
coverage the range between the lower and upper percentile was 0.65 ◦C, 
this increased to 0.70 ◦C at 50% and 0.94 ◦C at 90% FPV coverage. 

In response to increasing array coverage, continuous and cumulative 
stratification duration decreased rapidly when the array was deployed 
on the faster-flowing tank or centrally (Scenario-Fast and Scenario- 
Central; Fig. 3c and d). Maximum stratification duration was up to 22 
days longer in Scenario-Slow than under Scenario-Fast at 30% FPV 
coverage (Fig. 3c). Cumulative stratification duration was up to 75 days 
longer in Scenario-Slow than under Scenario-Fast at 30% FPV coverage 
(Fig. 3d). Significant stratification events did not occur in Scenario-Fast 
and -Central when array coverage exceeded 50% and in Scenario-Slow 
when coverage exceeded 70% (Fig. 3c and d). See supplementary in-
formation, Section 9, for the number of stratified simulations at each 
FPV coverage. 

The relationships between FPV coverage and stratification onset and 
overturn were weaker than for stratification duration (Fig. 3e and f). 
Stratification onset generally shifted to later in the year with FPV cov-
erages of up to 40% for Scenario-Fast and -Central (Fig. 3e). However, 
some simulations had an earlier onset of stratification at the 10% FPV 
coverage increment. In Scenario-Slow, stratification onset showed a 
weak shift to later in the year with FPV coverages of up to 70% (Fig. 3e). 
However, a few Scenario-Slow simulations showed an earlier onset at 

10–40% FPV coverage than the baseline (Fig. 3e). 
The overturn of stratification did not have a clear trend with 

increasing FPV coverage. However, overall, there was a tendency for 
overturn to be slightly later for all three scenarios than the baseline 
(Fig. 3f). However, a small number of simulations showed earlier 
overturn than the baseline (Fig. 3f). For example, at 10 and 20% FPV 
coverage, the lower extent of the estimated range was earlier than the 
lower extent of the baseline range for Scenario-Fast and Scenario- 
Central (Fig. 3f). Overturn of stratification in Scenario-Slow did not 
have a clear trend with increasing coverage, although typically it 
occurred slightly earlier than in Scenario-Fast and Scenario-Central at 
FPV coverages 20% or greater (Fig. 3f). Overturn occurred earlier than 
the baseline in a small number of simulations, for example, at 10–40% 
FPV coverage, when only the slower-flowing tank was covered. 

3.3. Response of phytoplankton 

3.3.1. Total chlorophyll-a 
In Scenario-Fast and Scenario-Central maximum total chlorophyll-a 

concentration, based on the mean of a window (± five days), defined by 
the baseline model runs, declined exponentially with increasing FPV 
coverage (Fig. 4). For example, in Scenario-Fast, median total chloro-
phyll-a was reduced by 10.21 μg L− 1 at 10% FPV coverage, 20.40 μg L− 1 

at 50% and 22.09 μg L− 1 at 90% compared to the baseline scenario. Each 
additional 10% coverage increment, up to 60%, reduced median total 
chlorophyll-a by 3.59 ± 1.84 μg L− 1 on average (Fig. 4). Coverages 
exceeding 60% in Scenario-Fast had negligible total chlorophyll-a (<1 
μg L− 1). 

Comparatively, Scenario-Central showed a slightly smaller reduction 
in median total chlorophyll-a concentration than Scenario-Fast. For 
example, median total chlorophyll-a was reduced by 4.01 μg L− 1 at 10% 
FPV coverage, 19.69 μg L− 1 at 50% and 22.01 μg L− 1 at 90% compared 
to the baseline scenario. In Scenario-Central, each additional 10% FPV 
coverage increment, up to 70%, reduced median total chlorophyll-a by 
3.05 ± 2.11 μg L− 1 (Fig. 4). Coverages exceeding 70% in Scenario- 
Central had negligible total chlorophyll-a (<1 μg L− 1). 

In Scenario-Slow, total chlorophyll-a concentration generally 
reduced with increasing FPV coverage. However, at lower FPV cover-
ages (10–30% coverage) where only the slower-flowing tank was 
covered, total chlorophyll-a simulations showed both increases and 
decreases from the baseline (Fig. 4). At 10% FPV coverage, total chlo-
rophyll-a was either reduced by up to 5% (0.89 μg L− 1; 2.5th percentile) 
or increased by up to 28% (7.95 μg L− 1; 97.5th percentile). At 20% FPV 
coverage, total chlorophyll-a either reduced by up to 15% (2.52 μg L− 1; 
2.5th percentile) or increased by up to 15% (4.28 μg L− 1; 97.5th 
percentile). At 30% FPV coverage, total chlorophyll-a either reduced by 
up to 19% (3.23 μg L− 1; 2.5th percentile) or increased by up to 4% (1.02 
μg L− 1; 97.5th percentile). Above 30% FPV coverage, when the faster- 
flowing tank started to be covered, median total chlorophyll-a 
declined on average by 2.87 ± 2.35 μg L− 1 per 10% additional cover. 

3.3.2. Annual total chlorophyll-a 
Median total chlorophyll-a generally reduced with increasing FPV 

coverage throughout the year for all scenarios (Fig. 5 and supplementary 
information, Section 7, for 95% confidence interval). However, on a 
small number of days between late May and the end of July, median 
total chlorophyll-a was greater than the baseline in Scenario-Slow at 
10–30% FPV coverage. FPV coverage had the greatest relative impact on 
median total chlorophyll-a at the start of August (Figure S 7–1). For 
example, at 10% FPV coverage median total chlorophyll-a had a relative 
reduction of 48% (24.38 μg L− 1) in Scenario-Fast and Scenario-Central. 
Whilst in Scenario-Slow, the greatest relative difference for 10% FPV 
coverage occurred in early June; a 17% (2.09 μg L− 1) reduction 
compared to the baseline scenario. The absolute differences as coverage 
exceeded 70% in Scenario-Fast and Scenario-Central were relatively 
small compared to lower coverages when the array was deployed 

Fig. 2. Simulated chlorophyll-a (coloured lines) samples within the limits of 
acceptability (grey shaded area). 
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exclusively on the faster-flowing tank (Fig. 5). The opposite occurred for 
Scenario-Slow, with coverages up to 30%, the area of the slower-flowing 
tank, having a small absolute difference with the baseline. The absolute 
difference increased once the array started to cover the faster-flowing 
tank (Fig. 5). 

3.3.3. Phytoplankton functional group dynamics 
While simulated chlorophyll-a concentrations declined exponen-

tially with increasing coverage, the relative proportion of phytoplankton 
functional groups varied. In Scenario-Fast, at FPV coverages of up to 
60%, diatoms dominated for most of the year, with their dominance 
increasing as FPV coverage increased up to 40% (Fig. 6 and 
Figure S8–1). As the coverage increased above 60%, proportions of 
green algae increased, approaching a similar proportion as diatoms. In 
some cases, green algae were very similar to, or slightly exceeded, the 
proportions of diatoms towards the end of summer, as for the baseline 

scenario (Fig. 6). 
Similarly, diatoms increasingly dominated with FPV coverages of up 

to 70% in Scenario-Central. Diatom dominance slowly reduced from 
70% to 100% coverage, associated with a higher proportion of green 
algae (Figure S8–2). In Scenario-Slow, FPV coverages of up to 90% were 
associated with diatoms dominating for most of the year (Figure S8–3). 
Diatom dominance strengthened as FPV coverage increased over 40% 
but declined again over 70%. In some cases, typically at FPV coverages 
up to 30%, green algae were very similar to, or slightly exceeded, the 
proportions of diatoms towards the end of summer, as they did in the 
baseline scenario (Figure S8–3). Cyanobacteria did not have a high 
relative or absolute abundance regardless of FPV coverage. 

4. Discussion 

We found reduced phytoplankton biomass and changes in species 

Fig. 3. A) Annual maximum and b) minimum water temperature, c) stratification duration, d) cumulative stratification duration, and stratification e) onset and f) 
overturn day, versus floating solar (FPV) array coverage for each deployment scenario. An asterisk indicates no prolonged stratification event occurred for the 
simulation. Whiskers represent the minimum and maximum of the simulation results presented. The box represents the 2.5th & 97.5th percentiles, which gives a 95% 
confidence interval that simulation estimates fall within this range. 0% FPV coverage represents QEII reservoir simulated as a baseline with no additional 
FPV coverage. 
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composition can be directly attributed to the direct shading effects from 
reduced solar radiation and indirect mixing effects from wind sheltering 
of FPV. We also found that the different thermal dynamics associated 
with each siting location meant phytoplankton in the faster flowing tank 
appear more sensitive to low FPV coverage than the phytoplankton in 
the slower flowing tank, as they have to contend with both shading and 
rapid flushing, resulting in a large cumulative effect. Inflow volume, 
water temperature and nutrient inputs remained unchanged. In general, 
increased FPV coverage reduced total chlorophyll-a, although the 

absolute and relative reduction varied between each FPV deployment 
siting location scenario. There were a small number of simulations 
where phytoplankton biomass increased when the array was deployed 
on the slower flowing area of the reservoir. However, these increases 
were time-limited and only at array coverages of up to 30% in a small 
number of simulations. 

4.1. Drivers behind the reduced phytoplankton biomass 

We found that minimum, maximum and median surface water 
temperatures cooled due to the shading effects of FPV, slowing phyto-
plankton growth by reducing metabolic rates (Kraemer et al., 2017) as 
FPV coverage increased. As growth rates are species-specific, varying 
with cell size, each functional group responded uniquely to cooler water 
temperatures owing to increasing FPV cover (Reynolds, 2006). While 
deployment location had several complex and interacting effects, the 
effects of higher flow speed combined with FPV coverage led to an 
enhanced cooling effect. Given this flushing effect, the faster circulation 
tank exhibited a greater reduction in total chlorophyll-a and a more 
pronounced change in phytoplankton community structure than for 
similar coverages of FPV deployed on the slower circulation tank. 

The cooler water temperatures associated with increasing FPV 
coverage reduced continuous and cumulative stratification duration. 
This indirect effect of FPV on reservoir mixing contributed to lower total 
chlorophyll-a in the reservoir (Exley et al., 2021a). In the absence of 
stratification or a shorter stratified period, the mixed layer, a funda-
mental driver of phytoplankton growth (Ross and Sharples, 2008; 
Longhi and Beisner, 2009), is deeper or fully mixed. The deepening of 
the mixed layer worsens the effective light climate for phytoplankton, 
moving them further from the higher light intensity surface waters 
(Reynolds, 1997). However, non-stratified conditions may allow 
phytoplankton to access pools of nutrients in the lower water column, 
favouring those species tolerant of the lower light availability at depth. 
On the small number of days when total chlorophyll-a increased with 
FPV coverage, the sheltering effect at the air-water interface likely 

Fig. 4. Total chlorophyll-a (based on the mean of a window, ± five days, 
around the day of maximum total chlorophyll-a) versus floating solar array 
coverage. Whiskers represent the minimum and maximum of the simulation 
results presented. The box represents the 2.5th & 97.5th percentiles, which 
gives a 95% confidence interval that simulation estimates fall within this range. 
0% floating solar coverage represents QEII reservoir simulated as a baseline. 

Fig. 5. Annual median total chlorophyll-a absolute difference by scenario. 0% floating solar coverage represents QEII reservoir simulated as a baseline with no 
additional floating solar coverage. The relative difference in chlorophyll-a is shown in Figure S 7–1. 
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reduced mixing, improving the conditions for phytoplankton growth 
(Exley et al., 2021a). 

4.2. The consequences for phytoplankton functional-type dynamics 

Modifications to reservoir thermal properties and shading from FPV 
coverage resulted in changes to phytoplankton functional-type dy-
namics, with the different siting locations modifying the response. 
Generally, the relative dominance of diatoms increased in the autumn 
with moderate FPV coverages as green algae populations reduced. 
However, these changes were offset by the overall rapid decline in 
phytoplankton biomass associated with increasing FPV coverage. In the 
faster circulation scenario, as FPV coverage increased and the reservoir 
became more mixed, dominance switched from green algae to diatoms, 
consistent with their affinity to well-mixed water bodies (Jäger et al., 
2008). In the slower circulation scenario, which experienced less of a 
reduction in stratification duration than the faster circulation scenario, 
species composition remained similar to the baseline conditions. 

Importantly, given the implications for water treatment and reser-
voir recreational use, cyanobacteria dominance did not increase with 
increasing FPV coverage for any of the deployment scenarios. This is 
attributable to the shaded conditions and additionally, the more mixed 
water column reduced the ability of cyanobacteria to regulate their 
buoyancy and vertical position to obtain favourable light and nutrient 
conditions (Reynolds et al., 1987; Burkholder, 2009). However, whilst 
our simulations show a reduction in total cyanobacteria biomass with 
increasing FPV coverage relative to the baseline, our use of 

functional-type aggregates may overlook the specific traits, tolerances 
and sensitivities among cyanobacteria taxa which could allow individ-
ual shade-tolerant or lower-optimum temperature species to dominate 
(Carey et al., 2012; Mantzouki et al., 2016; Armstrong et al., 2020). 
Studies considering the effects of surface covers have shown a switch to 
cyanobacteria dominance in some instances (Yamamichi et al., 2018; 
Exley et al., 2021b). However, the expanded model can simulate an 
unrestricted number of phytoplankton species, so assuming sufficient 
input data and observations to constrain the model, this uncertainty 
could be reduced in future applications. 

4.3. FPV as a tool for water body management 

Our results suggest that water body managers could tailor FPV sys-
tem design and siting location to achieve the management goals of the 
host water body. The impact of percentage cover is clear, with oppor-
tunities for tailoring reductions to water temperature, mixing dynamics 
and phytoplankton biomass and species composition. Further, the 
interaction between the different residence times associated with each 
scenario and increasing FPV coverage shows that siting location is an 
important consideration when planning the deployment of an FPV array. 
Modifying FPV siting location between areas of different circulation can 
contribute greater water quality co-benefits while using identical FPV 
coverage. For example, deploying an FPV array covering 40% of the 
reservoir on the faster-flowing tank reduced total chlorophyll-a by up to 
2.9 times more than deploying the same size array on the slower-flowing 
tank. Whilst the primary objective of an FPV installation is to generate 

Fig. 6. Scenario-Fast: Proportion of phytoplankton functional groups as a percentage of total chlorophyll-a for the simulated period. The initial phytoplankton 
functional group proportions were set evenly, therefore, the first 30 days of simulations are model run-in time and should be ignored. 0% floating solar coverage 
represents QEII reservoir simulated as a baseline. 
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renewable electricity, the potential for non-energy water quality co- 
benefits could offer an additional incentive to water body managers 
(de Lima et al., 2021; Exley et al., 2021a). However, this should be tested 
empirically given the simplification of the water body into faster and 
slower flowing tanks. 

Regardless of deployment location, the large, sustained reductions in 
phytoplankton with FPV deployment may provide an alternative to 
hydrological manipulation in reservoirs. Typically, reservoirs used for 
drinking water are managed to limit thermal stability, impeding the 
development of stratification and subsequent phytoplankton growth, 
which can be detrimental to water quality and disrupt the water treat-
ment process (Paerl, 2014; Visser et al., 2015; Huisman et al., 2018). 
Currently, management techniques that attract capital and operational 
expenditure, including flushing and artificial mixers, are used to change 
the system’s hydrology or light regime for phytoplankton (Visser et al., 
2015). Alternatively, FPV provides an opportunity to overcome the 
growing challenge of managing phytoplankton blooms (Burkholder, 
2009; Paerl et al., 2019; Plaas and Paerl, 2021), negating the need for 
such reservoir management and also generating zero-carbon electricity. 

However, there may be undesirable consequences of FPV deploy-
ment, especially for reservoirs used for recreation (e.g. the obstruction of 
the water’s surface) or those supporting aquatic life. Phytoplankton are 
the primary source of energy in lake food webs (Kalff, 2002) and an 
important component of global biogeochemical cycles (Falkowski, 
1994). Consequently, FPV induced changes could have profound 
ecological impacts. For example, lake production is a significant driver 
of zooplankton species richness (Hessen et al., 2006) and the disruption 
to trophic cascades may cause a significant reduction in planktivorous 
fish (Jeppesen et al., 2002; Gerdeaux et al., 2006). Therefore, practi-
tioners should undertake careful planning to ensure deployments and 
their corresponding impact on phytoplankton aligns with the manage-
ment goals of the host water body, with consideration for all trophic 
levels and accounting for the full range of plausible outcomes across the 
95% confidence interval as determined by the GLUE methodology. 

4.4. Expanded model adequacy, application and critical research needs 

This study has provided novel model insights into FPV impacts un-
obtainable through field manipulation. The expanded model allows the 
explicit simulation of FPV installations on different types of water bodies 
and differently functioning tanks of water bodies. The expanded model 
remains computationally efficient, thus allowing multiple runs to cap-
ture uncertainty, given the nature of the data commonly available for 
the water bodies FPV tend to be deployed on. The functionality to 
simulate discrete zones of water bodies will allow further research 
questions pertinent to the deployment of FPV to be answered. For 
example, determining the influence of water body morphometric char-
acteristics (e.g. depth and surface area) and FPV deployment layout (i.e. 
one continuous array or multiple smaller arrays) on FPV water quality 
impacts. Moreover, it will allow the implications of geographical loca-
tion and future climate to be simulated. As understanding of FPV im-
pacts and field data collection advance, future modelling studies will 
need to focus on the performance of critical processes in the model, for 
example, horizontal wind mixing. Moreover, the suitability of different 
models, which range in their complexity, will need to be assessed in light 
of the water body characteristics, including size, and research aims. 

Enhanced phytoplankton representation to simulate species compo-
sition enables the model to assess phytoplankton response in more 
detail. Better resolution of phytoplankton impacts is critical given the 
impacts of climate change and the implications for water supply reser-
voirs. In particular, the linking of Si species to the phytoplankton dy-
namics equations allows the representation of diatoms that can 
adversely affect water treatment as filamentous species block filters. 

Application of the GLUE methodology provides insightful model 
outcomes (e.g. a 95% confidence interval for simulations) despite the 
sparser data inputs than desirable for water body modelling. High 

frequency and spatially explicit monitoring of water quality impacts at 
existing FPV installations are required to constrain the model better and 
reduce uncertainties in estimated responses. Ideally, studies should 
consider a BACI (Before, After, Control, Impact) design (Stewart-Oaten 
et al., 1986), to monitor water body response before and after FPV 
deployment, using a control to ensure any observed impacts are specific 
to the intervention. Such observations will provide an empirical 
assessment of model outcomes and more robust modelling representa-
tions of change. Further, given the importance of phytoplankton com-
munities to water body function and the implications for water 
treatment, detailed quantitative phytoplankton speciation data would 
be invaluable to constrain the model better and improve phytoplankton 
functional group representations. 

5. Conclusion 

FPV deployment continues rapidly worldwide, outpacing under-
standing of any concomitant environmental impacts. Our findings 
demonstrate that modelling, using an uncertainty framework, can pro-
vide useful insight into possible water body response. Specifically, we 
found that FPV generally promotes cooler water temperatures that, 
coupled with deteriorated light conditions, slow phytoplankton growth. 
A less favourable mixing regime with FPV coverage can also lead to 
substantial phytoplankton biomass reductions, even with only a small 
percentage of a reservoir covered by FPV. FPV deployment also changes 
phytoplankton community composition, but any negative consequences 
were negated by the considerable reductions in total biomass, allaying 
hypothesised water quality concerns of a switch to undesirable species. 

Moreover, our results show that the location of an FPV on the water 
surface can significantly affect water body thermal dynamics, modifying 
phytoplankton response beyond the impacts of percentage coverage. 
This outcome demonstrates the need to consider spatial location within 
the water body in addition to the total magnitude of FPV coverage for 
deployment decisions. Modelling approaches present a valuable and 
resource-efficient tool to explore water body-FPV interactions, enabling 
the assessment of FPV design and location options without the need for 
extensive in-situ testing. Pre-deployment modelling thus could help FPV 
developers and water body managers minimise negative impacts and 
maximise co-benefits of FPV across a range of targeted water bodies 
worldwide. 
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Jäger, C.G., Diehl, S., Schmidt, G.M., 2008. Influence of water-column depth and mixing 
on phytoplankton biomass, community composition, and nutrients. Limnol. 
Oceanogr. 53 (6), 2361–2373. 

Janssen, A.B.G., Arhonditsis, G.B., Beusen, A., Bolding, K., Bruce, L., Bruggeman, J., 
Couture, R.M., Downing, A.S., Elliott, J.A., Frassl, M.A., Gal, G., Gerla, D.J., 
Hipsey, M.R., Hu, F.J., Ives, S.C., Janse, J.H., Jeppesen, E., Johnk, K.D., Kneis, D., 
Kong, X.Z., Kuiper, J.J., Lehmann, M.K., Lemmen, C., Ozkundakci, D., Petzoldt, T., 
Rinke, K., Robson, B.J., Sachse, R., Schep, S.A., Schmid, M., Scholten, H., 
Teurlincx, S., Trolle, D., Troost, T.A., Van Dam, A.A., Van Gerven, L.P.A., 
Weijerman, M., Wells, S.A., Mooij, W.M., 2015. Exploring, exploiting and evolving 
diversity of aquatic ecosystem models: a community perspective. Aquat. Ecol. 49 (4), 
513–548. 

Jeppesen, E., Jensen, J.P., Søndergaard, M., 2002. Response of phytoplankton, 
zooplankton, and fish to re-oligotrophication: an 11 year study of 23 Danish lakes. 
Aquat. Ecosys. Health Manag. 5 (1), 31–43. 

Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River, 
NJ.  

Kiuru, P., Ojala, A., Mammarella, I., Heiskanen, J., Kamarainen, M., Vesala, T., 
Huttula, T., 2018. Effects of climate change on CO2 concentration and efflux in a 
humic boreal lake: a modeling study. Journal of Geophysical Research- 
Biogeosciences 123 (7), 2212–2233. 

Klausmeier, C.A., Litchman, E., 2001. Algal games: the vertical distribution of 
phytoplankton in poorly mixed water columns. Limnol. Oceanogr. 46 (8), 
1998–2007. 

Kraemer, B.M., Chandra, S., Dell, A.I., Dix, M., Kuusisto, E., Livingstone, D.M., 
Schladow, S.G., Silow, E., Sitoki, L.M., Tamatamah, R., McIntyre, P.B., 2017. Global 
patterns in lake ecosystem responses to warming based on the temperature 
dependence of metabolism. Global Change Biol. 23 (5), 1881–1890. 

Lee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., Cox, S., 2020. 
Hybrid Floating Solar Photovoltaics-Hydropower Systems: Benefits and Global 
Assessment of Technical Potential, vol. 162. Renewable Energy, pp. 1415–1427. 

Lenard, T., Wojciechowska, W., 2013. Phytoplankton diversity and biomass during 
winter with and without ice cover in the context of climate change. Pol. J. Ecol. 61 
(4), 739–748. 

Livingstone, D.M., Adrian, R., 2009. Modeling the duration of intermittent ice cover on a 
lake for climate-change studies. Limnol. Oceanogr. 54 (5), 1709–1722. 

Longhi, M.L., Beisner, B.E., 2009. Environmental factors controlling the vertical 
distribution of phytoplankton in lakes. J. Plankton Res. 31 (10), 1195–1207. 

Maltby, E., Ormerod, S., Acreman, M., Dunbar, M., Jenkins, A., Maberly, S., Newman, J., 
Blackwell, M., Ward, R., 2011. Freshwaters: Openwaters, Wetlands and Floodplains’, 
UK National Ecosystem Assessment: Understanding Nature’s Value to Society. UNEP- 
WCMC, Cambridge, UK, pp. 295–360. 

Mantzouki, E., Visser, P.M., Bormans, M., Ibelings, B.W., 2016. Understanding the key 
ecological traits of cyanobacteria as a basis for their management and control in 
changing lakes. Aquat. Ecol. 50 (3), 333–350. 

Markelov, I., Couture, R.M., Fischer, R., Haande, S., Van Cappellen, P., 2019. Coupling 
water column and sediment biogeochemical dynamics: modeling internal 
phosphorus loading, climate change responses, and mitigation measures in lake 
vansjo, Norway. Journal of Geophysical Research-Biogeosciences 124 (12), 
3847–3866. 

Met Office, 2019. MIDAS Open: UK Daily Weather Observation Data, v201908. Available 
at: https://catalogue.ceda.ac.uk/uuid/6ad6792f44c84c228651b01d182d9d73. 
Accessed: 16/02/21.  

G. Exley et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.jenvman.2022.116410
https://doi.org/10.1016/j.jenvman.2022.116410
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref1
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref1
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref2
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref2
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref2
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref3
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref3
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref4
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref4
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref5
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref5
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref5
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref5
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref6
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref6
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref6
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref7
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref7
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref7
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref7
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref8
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref8
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref8
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref8
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref9
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref9
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref9
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref10
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref10
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref11
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref11
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref11
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref12
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref12
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref12
https://environment.data.gov.uk/water-quality/view/landing
https://environment.data.gov.uk/water-quality/view/landing
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref14
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref14
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref14
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref15
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref15
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref15
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref15
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref16
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref16
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref17
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref17
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref17
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref18
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref18
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref18
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref19
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref19
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref19
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref20
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref20
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref20
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref20
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref21
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref21
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref21
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref22
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref22
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref22
https://www.pv-magazine.com/2020/09/22/floating-solar-pv-gains-global-momentum/
https://www.pv-magazine.com/2020/09/22/floating-solar-pv-gains-global-momentum/
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref24
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref24
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref25
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref25
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref25
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref25
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref25
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref26
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref26
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref27
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref27
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref28
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref28
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref28
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref29
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref30
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref30
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref30
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref31
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref31
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref32
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref32
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref32
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref32
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref33
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref33
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref33
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref34
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref34
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref34
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref34
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref35
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref35
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref35
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref36
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref36
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref36
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref37
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref37
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref38
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref38
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref39
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref39
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref39
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref39
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref40
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref40
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref40
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref41
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref41
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref41
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref41
http://refhub.elsevier.com/S0301-4797(22)01983-1/sref41
https://catalogue.ceda.ac.uk/uuid/6ad6792f44c84c228651b01d182d9d73


Journal of Environmental Management 324 (2022) 116410

12

Meyer, K.M., Mooij, W.M., Vos, M., Hol, W.H.G., van der Putten, W.H., 2009. The power 
of simulating experiments. Ecol. Model. 220 (19), 2594–2597. 

Moe, S.J., Haande, S., Couture, R.M., 2016. Climate change, cyanobacteria blooms and 
ecological status of lakes: a Bayesian network approach. Ecol. Model. 337, 330–347. 

Momayez, M., Wilson, T., Cronin, A., Annavarapu, S., Conant, B.’, 2009. An investigation 
to use tailing ponds as solar photovoltaic farms. 26th Annual Meetings of the 
American Society of Mining and Reclamation and 11th Billings Land Reclamation 
Symposium 817–832. 

O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J., 2012. The rise of harmful 
cyanobacteria blooms: the potential roles of eutrophication and climate change. 
Harmful Algae 14, 313–334. 

Oliveira-Pinto, S., Stokkermans, J., 2020. ’Assessment of the Potential of Different 
Floating Solar Technologies - Overview and Analysis of Different Case Studies’, 
Energy Conversion and Management, vol. 211, 112747. 

Paerl, H.W., 2014. Mitigating harmful cyanobacterial blooms in a human- and 
climatically-impacted world. Life 4 (4), 988–1012. 

Paerl, H.W., Havens, K.E., Hall, N.S., Otten, T.G., Zhu, M., Xu, H., Zhu, G., Qin, B., 2019. 
Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects 
and challenges posed by climate change. Mar. Freshw. Res. 71 (5), 579–592. 

Page, T., Smith, P.J., Beven, K.J., Jones, I.D., Elliott, J.A., Maberly, S.C., Mackay, E.B., De 
Ville, M., Feuchtmayr, H., 2018. Adaptive forecasting of phytoplankton 
communities. Water Res. 134, 74–85. 

Pilla, R.M., Couture, R.M., 2021. Attenuation of photosynthetically active radiation and 
ultraviolet radiation in response to changing dissolved organic carbon in browning 
lakes: modeling and parametrization. Limnol. Oceanogr. 66 (6), 2278–2289. 

Plaas, H.E., Paerl, H.W., 2021. Toxic cyanobacteria: a growing threat to water and air 
quality. Environ. Sci. Technol. 55 (1), 44–64. 

Reynaud, A., Lanzanova, D., 2017. A global meta-analysis of the value of ecosystem 
services provided by lakes. Ecol. Econ. 137, 184–194. 

Reynolds, C., Irish, T., Elliott, A., 2005. A modelling approach to the development of an 
active management strategy for the Queen Elizabeth II reservoir. Freshw. Forum 23 
(1). 

Reynolds, C.S., 1997. Vegetation Processes in the Pelagic: a Model for Ecosystem Theory. 
Ecology Institute Oldendorf, Luhe, Hamburg.  

Reynolds, C.S., 2006. The ecology of phytoplankton. In: Ecology, Biodiversity and 
Conservation. Cambridge University Press, Cambridge.  

Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., Melo, S., 2002. Towards a 
functional classification of the freshwater phytoplankton. J. Plankton Res. 24 (5), 
417–428. 

Reynolds, C.S., Irish, A.E., Elliott, J.A., 2001. The ecological basis for simulating 
phytoplankton responses to environmental change (PROTECH). Ecol. Model. 140 
(3), 271–291. 

Reynolds, C.S., Oliver, R.L., Walsby, A.E., 1987. Cyanobacterial dominance: the role of 
buoyancy regulation in dynamic lake environments. N. Z. J. Mar. Freshw. Res. 21 
(3), 379–390. 

Ross, O.N., Sharples, J., 2008. Swimming for survival: a role of phytoplankton motility in 
a stratified turbulent environment. J. Mar. Syst. 70 (3–4), 248–262. 

Sacramento, E.M.d., Carvalho, P.C.M., de Araújo, J.C., Riffel, D.B., Corrêa, R.M.d.C., 
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